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A non-parallel linear stability analysis which utilizes the assumptions made in the
parabolized stability equations is applied to the buoyancy-driven flow in a differentially
heated cavity. Numerical integration of the complete Navier–Stokes and energy
equations is used to validate the non-parallel theory by introducing an oscillatory
heat input at the upstream end of the boundary layer. In this way the stability
properties are obtained by analysing the evolution of the resulting disturbances. The
solutions show that the spatial growth rate and wavenumber are highly dependent
on the transverse location and the disturbance flow quantity under consideration.
The local solution to the parabolized stability equations accurately predicts the wave
properties observed in the direct simulation whereas conventional parallel stability
analysis overpredicts the spatial amplification and the wavenumber.

1. Introduction
Buoyancy-driven flow in a side-heated cavity is the subject of continuing research.

From the point of view of its engineering applications and fluid mechanical aspects the
manner by which the flow is transformed from a steady laminar regime to an unsteady
turbulent regime, as the Grashof number is increased, is of particular interest. The
instability of the vertical boundary layers that are formed in a side-heated cavity is
one of several mechanisms for the transformation to a turbulent flow.

Three distinctive flow regimes in which the boundary layer instability plays an
important role in the transition to turbulence have been identified. The first is the
steady boundary layer in an unstratified environment where travelling waves in
the boundary layer are observed downstream of a critical height (see for example
Szewczyk 1962 and Gebhart et al. 1988). The perturbations evolve from natural
disturbances within the flow, are amplified as they travel downstream and eventually
become turbulent. In Polymeropoulos & Gebhart (1967) this instability was studied
experimentally by artificially introducing disturbances of particular frequencies into
the flow. The second regime is the occurrence of amplifying wave packets in transient

† Present address: Technische Thermodynamik, Technische Universität Chemnitz-Zwickau,
D09107 Chemnitz, Germany.
‡ Present address: Department of Civil and Systems Engineering, James Cook University,

Townsville 4811, Australia.



266 A. M. H. Brooker, J. C. Patterson and S. W. Armfield

flows. Wave packets have been observed in the start-up flow of a differentially heated
cavity with isothermally heated vertical walls (Patterson & Armfield 1990; Schöpf &
Patterson 1995) and in the flow adjacent to a wall subjected to instantaneous heating
with a constant-heat-flux boundary condition (Joshi & Gebhart 1987, 1988). The
rapid change in the wall boundary condition results in a travelling wave packet as the
flow adjusts to new boundary conditions. The wave packet originates at the upstream
end of the boundary layer and is amplified as it travels downstream in the flow
direction. Finally, self-sustaining oscillations characteristic of an absolute instability
have been observed in differentially heated cavities. The oscillations are once again
seen in the vertical boundary layers as travelling waves but they do not require
external forcing in order to be made visible. The critical Grashof number at which
self-sustaining oscillations occur has been ascertained by direct numerical simulations
by Le Quéré (1990), Janssen & Henkes (1995) and Paolucci & Chenoweth (1989).
The critical Grashof number varies with the cavity geometry, boundary conditions
and the Prandtl number.

Hydrodynamic instabilities have been classified as either convective or absolute
according to the way in which localized disturbances evolve (Landau & Lifshitz
1959). Consider a localized disturbance introduced into the flow at x0 and at time
t0. The criterion for an absolute instability is that, at x0, the disturbance grows
for all t > t0. The flow is convectively unstable if the disturbance only grows as
it travels away from the source and with signal at x0 decaying. Hence, at any
location in a convectively unstable flow, the disturbance is sustained exclusively by the
upstream disturbance. If the flow is also spatially evolving, the neutral stability point
is then the location where the disturbance changes from decaying with downstream
distance to growing with downstream distance. Various flows have been classified
as either convectively or absolutely unstable by Huerre & Monkewitz (1990). The
existence of wave packets that evolve from isolated disturbances and the downstream
amplification of natural disturbances suggest that vertical-plate natural convection
flows are convectively unstable for a range of Grashof numbers. In this study we
will consider only convectively unstable flows where the Grashof number is below
that at which an absolute instability or self-sustaining oscillations occur. Restricting
our analysis to convectively unstable flows allows us to examine waves which may be
highly unstable but which still behave linearly. This can occur since the amplitude of
a convectively unstable wave is completely dependent on the level of the upstream
forcing and is not dependent on its local rate of spatial amplification. The behaviour of
absolute instabilities is fundamentally different since the amplitude of the disturbance
must increase locally until nonlinear effects become important and where linear theory
can only be used to predict the critical Grashof number.

The first general formulation of the linear stability problem for natural convec-
tion boundary layers by Plapp (1957) was carried out using the parallel base-flow
approximation. The resulting normal mode stability equations are similar to the Orr–
Sommerfeld equations used in the study of Tollmien–Schlichting waves in forced flows
but are modified to include buoyancy forces and coupled with the thermal energy
disturbance equation. Parallel linear stability theory has been successful in describing
the travelling waves observed in a variety of flow configurations. Many stability anal-
yses have been performed on the steady boundary layer in an unstratified medium
(Gebhart et al. 1988). In these analyses the frequency that is most highly amplified
has matched the experimentally observed frequency. Armfield & Patterson (1992)
showed, using a linear stability analysis, that the most amplified wave frequency and
velocity matched those seen in a wave packet disturbance observed numerically and
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experimentally. However, in these studies the waves were observed downstream of the
neutral stability point and the validity of the parallel theory near the neutral point
was not tested. An exception to this was the study by Polymeropoulos & Gebhart
(1967) where disturbances were artificially imposed on the system. The neutral sta-
bility points could then be located and some agreement with parallel linear stability
analysis near the neutral stability point could be obtained.

Several previous studies have examined the effect of incorporating non-parallel
flow into the stability analysis. In all the flow regimes described the boundary layer
is growing and the horizontal velocity allows the boundary layer thickness to change
in the downstream direction. Consequently, any wave travelling along the boundary
layer must also evolve to account for the boundary layer growth. Haaland & Sparrow
(1973) performed non-parallel analysis by a straightforward inclusion of the non-
parallel terms in the modified Orr–Sommerfeld equations. However, the proposed
waveform remained a plane wave which prevented variation of the waveform in
the streamwise direction. More recently, formulations that model the streamwise
variations in the eigenfunction have been developed. Wakitani (1985) utilized the
WKB method in his formulation to study the stability of a buoyant plume. A
similar formulation was used to study a mixed convection boundary layer in Lee,
Chen & Armaly (1988). In each case the analysis required the base flow to be
described by a similarity solution to the boundary layer equations. A non-parallel
formulation proposed by Bertolotti, Herbert & Spalart (1992) has been applied to
forced boundary layer flows. By assuming that the perturbation eigenfunction has
the same slow variation in the downstream direction as the base flow they were
able to formulate parabolized stability equations. The parabolized stability equations
(PSE) can not only model the non-parallel effects but can also be extended to include
nonlinear and three-dimensional effects.

A different approach to the study of boundary layer stability was developed by
Fasel & Konzelmann (1990). Direct numerical simulations of a forced flat-plate
boundary layer were performed in which disturbances are imposed on the flow.
By forcing disturbances with a range of single frequencies the stability properties
of the boundary layer are determined. The method allows all possible non-parallel
effects to be ascertained and by imposing small disturbances the resulting travelling
waves have a linear form. Recently, a similar approach has been used for flows in a
differentially heated cavity (Armfield & Janssen 1996; Janssen & Armfield 1996). The
numerical solution to the steady cavity flow was first obtained and then temperature
disturbances were imposed by the inclusion of a heat source near the upstream end
of the boundary layer.

In this study we use the PSE assumptions to formulate a non-parallel linear
stability analysis which we apply to the vertical natural convection boundary layer
in a differentially heated cavity. The PSE are solved locally at particular heights
up the cavity wall. The results using the PSE are compared to stability analysis
using the conventional parallel flow approximations as well as those obtained by full
numerical simulation of the waves, referred to here as direct stability analysis. This
is the first time simultaneous stability studies have been undertaken for a natural
convection boundary layer flow and allows the accuracy of the parallel assumptions
to be ascertained and the non-parallel formulation to be tested.
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2. Non-parallel linear analysis
The parabolized stability equations are now developed for a general buoyancy-

driven boundary layer flow adjacent to a heated vertical wall. The governing equations
are the two-dimensional Navier–Stokes and energy equations based on the Boussinesq
assumptions which, given in terms of the streamfunction, ψ̃, and temperature, T̃ , are(

∂

∂t̃
+
∂ψ̃

∂ỹ

∂

∂x̃
− ∂ψ̃

∂x̃

∂

∂ỹ
− ν∇2

)
∇2ψ̃ − gβT̃ỹ = 0, (2.1a)

(
∂

∂t̃
+
∂ψ̃

∂ỹ

∂

∂x̃
− ∂ψ̃

∂x̃

∂

∂ỹ
− κ∇2

)
T̃ = 0. (2.1b)

Cartesian coordinates are used where x̃ is the vertical or streamwise direction and
ỹ is the horizontal or cross-stream direction. The fluid properties are the coefficient of
thermal expansion, β, the kinematic viscosity, ν, and the thermal diffusivity, κ, and g
is the acceleration due to gravity. The equations can be non-dimensionalized with the
temperature scale, ∆T , determined from the thermal boundary condition at the wall,
the boundary layer thickness, δ, and the velocity scale, Ub = gβ∆Tδ2/ν. Referring to
the non-dimensional base-flow streamfunction and temperature as (ψ(x, y), T (x, y)),
and the perturbation as (ψ′(x, y, t), T ′(x, y, t)), the nonlinear stability equations are
formed by substitution of ψ = ψ + ψ′ and T = T + T ′ into the non-dimensionalized
Navier–Stokes and energy equations. The linearized equations are formed by elimi-
nating the nonlinear terms and are given by

ψ′xxt + ψ′yyt + ψ′yψxxx − ψ′xψxxy + ψ′yψyyx − ψ′xψyyy + ψ′xxxψy − ψ′xxyψx

+ψ′yyxψy − ψ′yyyψx =
1

Grδ
(∇4ψ′ + T ′y), (2.2a)

T ′t + T ′xψy + Txψ
′
y − T ′yψx − Tyψ

′
x =

1

GrδP r
(T ′xx + T ′yy), (2.2b)

in which the Prandtl number is defined by Pr ≡ ν/κ and the Grashof number by
Grδ ≡ gβ∆Tδ3/ν2. Solutions for the perturbations, (ψ′, T ′), are then sought of the
form

ψ′(x, y, t) = ψ(x, y) exp

(∫ x

x0

k(ξ)dξ − iωt

)
+ c.c., (2.3a)

T ′(x, y, t) = T (x, y) exp

(∫ x

x0

k(ξ)dξ − iωt

)
+ c.c., (2.3b)

where c.c. stands for the complex conjugate and x0 is a height above the leading
edge of the wall. The perturbation is a two-dimensonal spatially evolving wave with
real frequency ω. The first part of the perturbation is a complex eigenfunction,
(ψ(x, y), T (x, y)), that describes the variation of the waveform in the cross-stream
and downstream directions. The other part of the perturbation is an exponential that
describes the wave-like nature of the disturbance with kr(x), the real part of k(x),
being the exponential growth rate and the imaginary part of k(x), ki(x), being the
downstream wavenumber.

The base flow is a boundary layer in which the downstream variation is slow and
which can be approximated by the solution to the equations with the boundary layer
approximation. The boundary layer equations however cannot be used to describe
the perturbation since the perturbation wavelengths that are of interest are too short
for the second derivatives in the downstream direction to be neglected. The PSE
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make use of the observation that, for Tollmien–Schlichting waves, the waveform
eigenfunction, the wavelength and the growth rate all vary slowly in the downstream
direction. Hence, the equivalent boundary layer approximations can be made for
the perturbation eigenfunction. The PSE are then formulated from the perturbation
equations (2.2) by neglecting all the base flow and perturbation eigenfunction terms
with second- and higher-order x derivatives, as well as multiples of terms each with
first- or higher-order x derivatives. Applying these assumptions to the perturbation
form (2.3) the derivatives of the perturbation with respect to x can be written as

∂mψ′

∂xm
=

[
kmψ + mkm−1 ∂ψ

∂x
+
m

2
(m− 1)km−2 dk

dx
ψ

]
exp

(∫ x

x0

k(ξ)dξ − iωt

)
+ c.c.,

(2.4a)

∂mT ′

∂xm
=

[
kmT + mkm−1 ∂T

∂x
+
m

2
(m− 1)km−2 dk

dx
T

]
exp

(∫ x

x0

k(ξ)dξ − iωt

)
+ c.c.

(2.4b)
We also assume that the wavelength and growth rate vary slowly in the downstream
direction so that d2k/dx2 and the product of dk/dx with other first-order derivatives
are negligible. Substituting the perturbation forms from equations (2.4) into the
perturbation equations gives,

(L0,1 + L1,1)ψ + L0,2T + L2,1

∂ψ

∂x
+

dk

dx
L3,1ψ = 0, (2.5a)

(M0,1 +M1,1)ψ + (M0,2 +M1,2)T +M2,1

∂ψ

∂x
+M2,2

∂T

∂x
+

dk

dx
M3,2T = 0, (2.5b)

with the differential operators,

L0,1 = − 1

Grδ
(D2 + k2)2 + (ψyk − iω)(D2 + k2)− ψyyyk,

L0,2 = − 1

Grδ
D, L1,1 = ψxyyD− ψx(D3 + k2D),

L2,1 = − 1

Grδ
(4kD2 + 4k3) + ψy(D

2 + 3k2)− 2ikω − ψyyy,

L3,1 = − 2

Grδ
(D2 + 3k2)− iω + ψy3k,

M0,1 = −Tyk, M0,2 = − 1

GrδP r
(D2 + k2)− iω + ψyk,

M1,1 = TxD, M1,2 = −ψxD, M2,1 = −Ty,

M2,2 = − 1

GrδP r
2k + ψy, M3,2 = − 1

GrδP r
,

in which D refers to differentiation with respect to y.
As it stands there is some ambiguity in the partition of the perturbation between its

oscillatory and slowly varying components. As discussed in Bertolotti et al. (1992) this
can be overcome by enforcing a condition which restricts the downstream variation
of the eigenfunction. Here, we shall solve the PSE locally at a height x0 where the
normalization condition that k is constant is used. Hence we extend the local solution
given by equation (26) in Bertolotti et al. (1992) to our case of a natural convection
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boundary layer. We shall demonstrate a posteriori that setting k to a constant in the
local solution does restrict the downstream variation in the eigenfunctions as required.
In the local solution procedure the base flow and the perturbation eigenfunction
are written as a Taylor series expansion about the height x0. The boundary layer
approximation made by the PSE ensures that all but the first two terms in the
expansion are neglected. With the expansion of the perturbation eigenfunction now
written as

ψ(x, y, t) = ψ0(y) + (x− x0)ψ1(y), (2.6a)

T (x, y, t) = T0(y) + (x− x0)T1(y), (2.6b)

and the base flow as

ψ(x, y) = ψ((x0, y) + (x− x0)ψx(x0, y), (2.7a)

T (x, y) = T (x0, y) + (x− x0)Tx(x0, y), (2.7b)

substituting into (2.2) gives the local PSE:

L0,1ψ0 + L0,2T0 + L1,1ψ0 + L2,1ψ1 = 0, (2.8a)

M0,1ψ0 +M0,2T0 +M1,1ψ0 +M1,2T0 +M2,1ψ1 +M2,2T1 = 0, (2.8b)

L0,1ψ1 + L0,2T1 + L4,1ψ0 = 0, (2.8c)

M0,1ψ1 +M0,2T1 +M4,1ψ0 +M4,2T0 = 0. (2.8d)

The additional differential operators are given by

L4,1 = ψxy(kD
2 + k3)− ψyyyxk,

M4,1 = −Txyk, M4,2 = ψxyk.

The base flow fields (ψ,T ), are now evaluated at x = x0 and given appropriate
boundary conditions, determined by the particular base flow under consideration, the
eigenvalue problem can then be solved.

It should be noted that in order to account for the downstream variation in the
base flow the perturbation is divided into two functions, both containing x. As a result
there no longer exists a plane wave solution with a straightforward definition of the
wavenumber and spatial amplification as the gradient of the phase. Also, in defining
the perturbation this way we have incorporated all of the downstream variation of
the wavenumber and amplification into the eigenfunction. The value for k represents
only one component of the physical amplification and wavenumbers which we define
here as the real and imaginary parts of the downstream gradient of the perturbation,
normalized by the perturbation. The amplification and wavenumber further depend
on the component of the perturbation taken and, for instance, different values will
result for the temperature component verses the velocity components. The physical
wavenumbers and amplifications are the sum of two components, one arising from the
exponential term and the other from the algebraic x dependence in the eigenfunction.
Using the non-parallel formulation the physical amplification, aSq , and wavenumbers,

kSq , at a height, x0, and for a flow variable, q, are defined by

aSq (x0, y) ≡ Re

(
1

q′(x0, y, t)

∂

∂x
q′(x0, y, t)

)
= kr(x0) + Re

(
q1(x0, y)

q0(x0, y)

)
, (2.9)
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kSq (x0, y) ≡ Im

(
1

q′(x0, y, t)

∂

∂x
q′(x0, y, t)

)
= ki(x0) + Im

(
q1(x0, y)

q0(x0, y)

)
. (2.10)

Note that although the formulation is non-parallel in the sense that the downstream
variation in the base flow and perturbations are modelled the solutions are still strictly
local in character at the particular x0 chosen.

The PSE reduce to the conventional parallel linear stability equations in the limit
of parallel flow. The linear stability equations with parallel flow approximations are
formed by assuming a perturbation of the form

ψ′(x, y, t) = ψ0(y) exp(kx− iωt), (2.11a)

T ′(x, y, t) = T0(y) exp(kx− iωt), (2.11b)

and the base flow is approximated locally by

ψ(x, y) = ψ(x0, y), T (x, y) = T (x0, y). (2.12a,b)

Substituting these into the perturbation equations (2.2) the parallel flow linear stability
equations are

L0,1ψ0 + L0,2T0 = 0, M0,1ψ0 +M0,2T0 = 0, (2.13a,b)

with the differential operators

L0,1 = − 1

Grδ
(D2 + k2)2 + (ψyk − iω)(D2 + k2)− ψyyyk, L0,2 = − 1

Grδ
D,

M0,1 = −Tyk, M0,2 = − 1

GrδP r
(D2 + k2)− iω + ψyk.

3. Application to the differentially heated cavity
The parallel and non-parallel linear stability equations developed above are appli-

cable to a range of buoyancy-driven boundary layer flows. Here, they are applied to
the steady-state flow in a differentially heated cavity. The base flow used for the linear
stability analyses is obtained from the steady-state numerical solution to the cavity
problem described below. A direct stability analysis of the same flow is also carried
out for comparison to the linear stability results.

The flow configuration is a square cavity of height, H , with isothermal vertical
sidewalls at temperatures Th and Tc and adiabatic top and bottom walls. The
governing equations are the two-dimensional Navier–Stokes energy equations with the
Boussinesq assumptions. A different scaling is applied to the cavity since the problem
now has an imposed length scale, H . Using the length, velocity and temperature scales,
H , ν/H and ∆T = (Th − Tc)/2 the Navier–Stokes and energy equations form the set
of non-dimensional equations

Ux + Vy = 0, (3.1a)

Ut +UUx + VUy = −Px +Uxx +Uyy + GrHT , (3.1b)

Vt +UVx + VVy = −Py + Vxx + Vyy, (3.1c)

Tt +UTx + VTy =
1

Pr
(Txx + Tyy) + S. (3.1d)

The hot wall is on the left-hand side of the cavity with the origin of the coordinate
system at the base of the hot wall and x and y being the vertical and horizontal
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(a) (b)

Figure 1. (a) The temperature field, T , at steady state: isovalues are −1.0, (0.2), 1.0.
(b) The streamfunction field , ψ, at steady state: isovalues are 0, (2), 12.

coordinates respectively. The heat source term, S , is zero except when the direct
stability analysis is performed. The non-dimensionalized vertical and horizontal ve-
locities are U and V respectively and the values of the non-dimensional parameters
are GrH ≡ gβ∆TH3/ν2 = 4× 107 and Pr = 7.5.

The non-dimensionalized Navier–Stokes equations are solved numerically using
an implicit second-order time integration and a finite volume spatial discretization
on a non-staggered mesh. The procedure is that described in Patterson & Armfield
(1990) and further details are provided in Armfield (1991, 1994). Briefly, the procedure
uses second-order central differences to approximate the second derivative, pressure
gradient and divergence terms, and the quick scheme for the advective terms. Grid
refinement tests and the comparison between the direct stability and the non-parallel
stability results were used to ensure the solutions were converging to grid and time-
step independent results. The calculations displayed were obtained using a 121 by
121 grid discretization and time step of ∆t = 5 × 10−7. A stretched grid ensured
that the vertical boundary layers received the highest resolution. Figure 1 shows the
steady-state numerical solution of the temperature and streamfunction fields. The
following sections examine the stability of the hot wall only, recognizing that with
symmetry the results for the cold wall are identical.

3.1. Linear stability analysis

For the Grashof/Prandtl number combination chosen the flow converges to a steady
solution in which the interior is stratified and thin boundary layers exist adjacent
the vertical walls. Henkes & Hoogendoorn (1993) demonstrated the boundary layer
character of this flow by calculating numerically the flow using the boundary layer
equations. The boundary layer solution matched the full numerical solution for
Grashof numbers greater than 106. The boundary layer length and velocity scales

are given by δ = H/Gr
1/4
H and Ub ≡ gβ∆Tδ2/ν = Gr

1/2
H ν/H . Although the flow is

absolutely stable according to the definition of Landau & Lifshitz (1959) we shall
show that certain regions in the vertical boundary layers are convectively unstable.

At any given height x0 in the cavity the linear stability analysis is performed for a
horizontal cross-section of the flow. The base-flow quantities required for the parallel
stability calculations are u(x0, y), uyy(x0, y) and Ty(x0, y). These, and the additional
base-flow quantities required in the non-parallel analysis, ux(x0, y), uyyx(x0, y), v(x0, y),
vyy(x0, y), Tx(x0, y) and Txy(x0, y), are shown in figure 2 for a height x0 = 0.5. As
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Figure 2. The base-flow fields adjacent to the hot wall for x/H = 0.5. The fields are scaled with
respect to the boundary layer scalings, δ and Ub.

expected for the boundary layer region the base-flow terms that have x-derivatives of
the base-flow streamfunction and temperature are of O(Gr−1

δ ).
Using the parallel analysis, equations (2.13a,b) are subject to homogeneous bound-

ary conditions for ψ0, ψ0y and T0 on the hot wall at y = 0 and also at the opposite
wall, y = 1. In the non-parallel formulation equations (2.8) have homogeneous bound-
ary conditions for ψ0, ψ0y , ψ1, ψ1y , T0 and T1 at y = 0 and y = 1. For waves travelling
upwards in the hot boundary layer the eigenfunctions asymptote to zero well before
reaching the cold wall. This allows the location of the outer boundary condition to
be chosen at y = ymax < 1. An appropriate value for ymax is chosen such that further
increasing ymax results in a negligible change in the solution. In the results presented
here ymax ranges between 0.1 and 0.2.

The stability equations are solved using a straightforward shooting method with
orthonormalization (Davey 1973) that simultaneously solves for the eigenfunctions,
ψ0, ψ1, T0 and T1 and the complex eigenvalue, k, for a given frequency, ω, and height,
x0.

3.2. Direct stability analysis

Direct stability analysis allows the stability properties of individual frequency compo-
nents to be examined by forcing the flow with a single frequency. Since the solution
utilizes the full Navier–Stokes and energy equations all possible non-parallel effects
are incorporated in the analysis. The heat source term, which was zero in the devel-
opment of the steady flow, is used to introduce perturbations into the flow at the
base of the hot boundary layer. The source term, S , is non-zero only in the region,
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0 < x < 0.01, 0 < y < 0.01 where

S = A sin(2πfit). (3.2)

After an initial transient phase, where the disturbance spreads up the boundary
layer, a steady pattern of oscillations over the boundary layer is established. The
perturbations are rapidly damped once they reach the top boundary and are not
carried across to the opposite cold wall. The amplitude of the imposed perturbation,
A, was chosen such that the resultant wave remained almost linear, which was tested
by checking that the maximum amplitude of the perturbation in the boundary layer
was proportional to A and the growth rates were independent of the wave amplitude.
In most simulations a value of A = 0.1 was used.

The relevant wave properties were ascertained by calculating the wave amplitudes
from the time series taken after a steady wave pattern had been established. Hence
the amplitude for a given flow variable q is defined as

Aq(x, y) =
(
q(x, y, t)− q(x, y, t)

)2
1/2

(3.3)

where the overbar refers to the time mean over approximately ten wave periods. The
amplification derived from the direct stability analysis is then

aDq (x, y) =
1

Aq(x, y)

∂

∂x
Aq(x, y). (3.4)

4. Results
Results were obtained for a range of heights up the hot boundary layer and

over a range of frequencies. We present results for a selection of frequencies and
positions which illustrate features of the travelling waves in a non-parallel flow
and the importance of non-parallel assumptions in the stability analysis. The linear
stability analysis is discussed with comparison to the benchmark direct stability
analysis results.

4.1. Transverse properties

The complex-valued eigenfunctions that result from the linear stability analysis each
comprise a magnitude and a phase component. For example, the temperature eigen-
function, T0(y), can be written as

T0(y) = |T0(y)| exp(iPT0
(y)), (4.1)

where the magnitude, |T0|, and the phase, PT0
, are defined by,

|T0(y)| =
(
Re(T0(y))2 + Im(T0(y))2

)1/2
,

PT0
(y) = tan−1

(
Im(T0(y))

Re(T0(y))

)
.

We will first check our assumption that ignoring the first- and higher-order x-
derivatives of k(x) in the local solution of the PSE does result in solutions in which
the eigenfunction has the same slow x variation as the base flow. Figure 3(a,b) shows
the normalized magnitudes of the temperature and vertical velocity eigenfunctions for
the frequency fi = 5×103 and at cavity height x = 0.5, obtained using the non-parallel
formulation (2.8). As we shall see later, this frequency results in the most rapidly
amplified wave at this height. Figure 3(c,d ) shows the gradients, T1 ≡ (∂T ′/∂x)(x0, y)
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Figure 3. (a) The normalized magnitude of the temperature eigenfunction, |T0|/|T0|max and (b) the
vertical velocity eigenfunction, |U0|/|U0|max. (c) The temperature eigenfunction gradient |T1|/|T0|max.
(d ) The vertical velocity eigenfunction gradient |U1|/|U0|max. All quantities are for frequency
fi = 5× 103 and at height x = 0.5.

and U1 ≡ (∂2ψ′/∂y∂x)(x0, y), normalized by the maximums of T0 and U0 respectively.
Clearly, |T1|/|T0|max and |U1|/|U0|max are of the same order as the gradient terms in
the base flow, O(Gr−1

δ ), as required.
Since the stability analyses is linear, the solutions are valid subject to multiplication

by an arbitrary constant. To compare the linear stability analyses to the direct
analysis the maximum of the magnitude of the temperature eigenfunction is used
to normalize the streamfunction and temperature eigenfunctions. Results from both
the linear stability analysis and the direct stability analysis are now presented scaled
with respect to the cavity length and velocity scalings, H and ν/H . The results
for the case with fi = 5 × 103 and at height x = 0.5 are considered. In figure
4(a) the temperature eigenfunctions calculated using parallel and non-parallel theory
are shown by the dashed and solid lines respectively and, at this scale, are barely
distinguishable. The normalized amplitudes resulting from the direct analysis are
shown as open circles. Figure 4(b) shows the normalized magnitude of the vertical
velocity eigenfunction, |ψ0y|. The eigenfunctions in each case match the full numerical
results very well. Consider now the spatial growth rates in the downstream direction
of the temperature and vertical velocity signals. Using parallel assumptions the
amplification, kr , is independent of cross-stream position and flow variable and
is shown by the dashed lines in figure 4(c,d ). Using the non-parallel analysis the
amplification is dependent on the transverse direction as given by equation (2.9).
The variation in amplification across the boundary layer allows the shape of the
eigenfunction to change with the flow as it converges or diverges. The non-parallel
amplifications are shown in figure 4(c,d ) for the temperature and vertical velocity
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Figure 4. (a) The temperature eigenfunction, T0(x = 0.5, y) using non-parallel (solid line) and
parallel (dashed line) assumptions and the direct eigenfunction AT (x = 0.5, y) (circles). (b) As
for (a) but for the vertical velocity eigenfunctions, ψ0y(x = 0.5, y) and AU(x = 0.5, y). (c) The
amplifications, aST (x = 0.5, y) (solid line), kr(x = 0.5) (dashed line) and aDT (x = 0.5, y) (circles). (d )
The amplifications, aSU(x = 0.5, y) (solid line), kr(x = 0.5) (dashed line) and aDU(x = 0.5, y) (circles).
All quantities are for frequency fi = 5× 103.

signals respectively and are represented as solid lines. Amplifications calculated from
the direct stability analyses, equation (3.4), are shown by the open circles. Clearly the
amplification has a strong transverse dependency that cannot be modelled using the
conventional parallel theory. It is notable that the transverse dependency is strong
despite the fact that at this height the maximum of the transverse velocity is only
0.25% the maximum of the vertical velocity. The non-parallel analysis does however
predict the amplification accurately. Disagreement in the temperature amplification
for y > 0.05, in figure 4(c), is not significant as the eigenfunction magnitude is almost
zero at these locations.

Shown in figure 5(a–c) are the temperature eigenfunctions for a lower frequency,
fi = 3 × 103, at three heights, x = 0.3, 0.5 and 0.7. The parallel and non-parallel
stability results both give good predictions of the eigenfunction seen in the full
simulation. The eigenfunctions consist of two peaks with the maximum of each peak
shifting further out from the wall with increasing distance up the wall. The size of the
outer or second peak is also increasing relative to the size of first inner peak. This
behaviour is consistent with the shape of the amplification curves shown in figure
5(d–f ). The amplification increases across the first peak, then there is a sharp drop in
the amplification which is consistent with the eigenfunction peaks moving out from
the boundary. The amplification is also higher at the maximum of the second peak
than at the first, leading to an increase in the size of the second peak relative to the
first.

The prediction of the wavenumber has also been investigated. The non-parallel
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Figure 5. The temperature eigenfunction, T0, using non-parallel (solid line) and parallel (dashed
line) assumptions and the direct eigenfunction AT (circles) at x = 0.3 (a), x = 0.5 (b) and x = 0.7
(c). The amplifications, aST (solid line), kr (dashed line) and aDT (circles) at x = 0.3 (d ), x = 0.5 (e)
and x = 0.7 (f ). The wavenumbers, kST (solid line), ki (dashed line) and kDT (circles) at x = 0.3 (g),
x = 0.5 (h) and x = 0.7 (i ). All quantities are for the frequency fi = 3× 103.
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Figure 6. (a) The magnitude, |T0(y)|, and (b) the phase, PT0
(y), of the temperature eigenfunction

for fi = 3× 103 and x = 0.5.

analysis predicts that the wavenumber depends on the transverse coordinate as
given by equation (2.10). This dependence arises from changes in the phase lag of
the disturbance across the boundary layer. The wavenumber, kDp , is estimated by
measuring the peak-to-peak distance in the direct stability analysis. Figure 5(g–i )
shows that the parallel analysis overpredicts the wavenumber at each height. At the
location of the maximum of the temperature amplitude the wavenumber from the
parallel analysis is in error by approximately 10%. Figure 6 shows the magnitude and
the phase of the temperature eigenfunction for fi = 3× 103 and height x = 0.5. The
minimum in the wavenumber that occurs near y = 0.025 results from the 180◦ phase
shift that exists between the inner and outer peaks seen in figure 6. The non-parallel
formulation is very successful in predicting this behaviour.
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Figure 7. The phase velocities, ω/kST (y = 0.008) (solid line), ω/kDT (y = 0.008) (circles) and ω/ki
(dashed line) at heights (a) x = 0.2, (b) x = 0.3, (c) x = 0.5 and (d ) x = 0.7.

The phase velocities, ω/ki, ω/k
S
T and ω/kDT , have also been compared over a range

of frequencies. Although the phase velocity does vary across the boundary layer,
there is only a weak dependency over the region closest to the wall. A representative
transverse distance of y = 0.008 is chosen at which to compare the phase velocity
of the waves at different heights and frequencies. In figure 7 the phase velocities
calculated from the direct stability analysis at heights x0 = 0.2, 0.3, 0.5 and 0.7 are
compared to the linear stability results. While the non-parallel theory performs well
at all frequencies the agreement between the parallel theory and the direct stability
analysis deteriorates as the frequency is decreased.

4.2. Integral properties

The amplification, at a given height, can be separated into the sum of two parts, the
first being the net amplification of the disturbance at the given height, the second
redistributing the disturbance across the boundary layer but contributing zero net
amplification. In evaluating the parallel and non-parallel theories it is important to
ascertain whether the parallel theory predicts the net amplification correctly, despite
failing to account for cross-stream variations in the amplification. The integral of
the temperature eigenfunction across the boundary layer is used to define the net
disturbance amplitude at a given height from which the net amplification can then be
calculated. Using the non-parallel analysis the net amplification is then

aS (x) = Re

 1∫
T ′(x, y, t)dy

∂

∫
T ′(x, y, t)dy

∂x

 =
1∫

|T0(x, y)|dy

∫
aST (x, y)|T0(x, y)|dy,

(4.2)
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Figure 8. The net amplifications, aS (solid line), aD (circles) and kr (dashed line) at heights (a)
x = 0.06, (b) x = 0.08, (c) x = 0.10, (d ) x = 0.3, (e) x = 0.5 and (f ) x = 0.7.

and the equivalent net amplification derived from the direct stability analysis is

aD(x) =
1∫

AT (x, y)dy

∂

∫
AT (x, y)dy

∂x
. (4.3)

Shown in figure 8(a–c) are the net amplifications over a range of frequencies and
at heights x = 0.06, 0.08 and 0.1 which are near the location of the neutral stability
point. Figure 8(b) shows that the direct stability analysis gives a critical height and
frequency of approximately 0.08 and 7× 103 respectively. The parallel theory predicts
that the flow is more unstable with the critical height near x = 0.06 and at a frequency
of 5 × 103. The non-parallel analysis gives a much better prediction of the critical
height and frequency. It is also observed that the error in the parallel theory is greater
for lower frequencies. The comparison using the integral quantities of other variables,
such as the integrated vertical velocity perturbation, give similar results. Figure 8(d–f )
shows that further up the cavity, at x = 0.3, 0.5 and 0.7, the parallel theory provides
better predictions and at x = 0.7 the parallel theory performs equally as well as the
non-parallel formulation. The most amplified frequency decreases with height up the
cavity and at x = 0.7 it has dropped to 4× 103 from 7× 103 at the critical point.

5. Conclusions
The stability of the vertical boundary layer in a differentially heated cavity at

Grashof number 4 × 107 and Prandtl number 7.5 has been investigated using three
different techniques. The first is a linear stability analysis of the flow performed with a
local approximation of parallel flow. In the second a local solution of the parabolized
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stability equations is used. The PSE formulation is applicable to any slowly varying
buoyancy-driven flow adjacent to a vertical wall. Finally a direct stability analysis was
performed by introducing small-amplitude sinusoidal disturbances into a numerical
simulation of the flow. This allowed the evolution of linear disturbances to be directly
calculated with all non-parallel effects incorporated.

Many previously unrecognized features of the stability of non-parallel flow in a
cavity have been revealed using the direct stability analysis. The perturbation am-
plifications and wavelengths exhibit a strong cross-stream dependency. Furthermore,
the wave properties also depend on the flow variable considered. The non-parallel
formulation for the linear stability equations has resulted in excellent agreement with
the direct stability results, both in terms of the amplification and the wavenumber.
The parallel formulation for the linear stability analysis does not model the strong
cross-stream dependence in the spatial amplification and hence cannot be compared
with experimentally determined amplifications from fixed cross-stream locations. In
previous numerical and experimental studies the strong transverse dependency has
not been recognized and amplifications, based only on a single measurement made
at the eigenfunction maximum, matching the parallel theory results may have been
fortuitous.

The integral of the temperature perturbation across the boundary layer was used
to define a net amplification at any given height up the cavity. At cavity heights
where the transverse flow was weak the differences between the parallel and the
direct analyses values for the net amplification were small. However, the parallel flow
analysis results deteriorated when the transverse flow was increased as was the case
near the critical stability point. Hence the parallel analysis underpredicted the critical
height and frequency. The parallel analysis also performs poorly at low frequencies.
This is not unexpected since the lower frequencies correspond to wavelengths which
are longer when compared to the length scale over which streamwise variation in the
base flow is occurring.

The frequency of the most amplified wave decreased with height up the cavity.
This is in contrast to linear stability results for open non-stratified flows (Gebhart
et al. 1988) where the most amplified frequency remains relatively constant with
downstream distance and a narrow band of frequencies dominates the disturbance
response.
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